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Abstract

In this paper self-adaptive supervisory predictive functional control is studied for applications in a semi-batch reactor in which the optimal
operation is to follow the reference trajectory without significant overshoot, and to minimize the overall batch time. The volume in the reactor
varies, bending to increase with time, as does the heat-transfer surface inside the reactor. This causes variations in the batch-reactor dynamics
which means serious problems with the reactor’s core-temperature control. The semi-batch reactor is used in the pharmaceutical industry for the
production of drugs, where quality control is extremely strict and it is necessary to follow the exact production recipe. The semi-batch reactor is
an example of a hybrid process where there are some discrete on/off valves and a continuous mixing valve. The supervisory control is designed to
cope with the constraints and the discrete actuators. A simulation study was carried out to investigate the possible use of the proposed self-adaptive
control algorithm in a real application.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In chemistry, pharmacy and biotechnology the batch reac-
tors function as the most important part in process technology.
The control of batch reactors is essentially a problem of tem-
perature control which is difficult to overcome. The difficulties
arise in part from the mixed continuous and discrete nature of
the process behavior and the equipment, the various uses of
these reactors, the drastic changes in set-point during the oper-
ation and the different modes of operation which requires an
adaptive functioning. Large numbers of these batch reactors are
semi-batch or fed-batch reactors in which the initial mixture of
material is placed. The mixture is then heated to the desired
temperature and additional reactant is gradually added in to the
vessel during the procedure. The volume in the reactor varies,
tending to increase with time, as does the heat-transfer surface
of the reactor. The construction of the reactor induces the heat-
transfer through the reactor’s jacket to the reactor’s core. From
the dynamic point of view the reactor represents a time-varying
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process with unknown parameters. The optimal operation of the
semi-batch reactor is to follow the reference trajectory, which
is defined by the technological recipe, as precisely as possible
and without overshoot. All the important variables should be
within the prescribed intervals. A very important constraint is
that of the reactor’s jacket temperature, which should not exceed
its upper limit because this can cause damage to the ingredients,
which are very sensitive to the temperature. Another important
goal of batch-reactor control is the minimization of the overall
batch time.

In the literature a number of papers have been published
that discuss the control of batch reactors. Initially, a various
types of controllers were studied, together with the optimum
batch trajectories. The state-of-the-art control schemes up to
the year 1986 are given in [15]. During that time many dif-
ferent concepts of semi-batch reactor control were developed.
The most promising of these were the concepts of adaptive
control [3,18], optimal control [2,8,19] and especially model-
predictive control schemes, which are the most frequently used
[4,5,9,11–13,16,17]. Model predictive control was very success-
ful in solving many industrial control problems [1,6,7]. One of
the most frequently used predictive schemes in practice is the
predictive functional control scheme [21,22], which has been
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I. Škrjanc / Chemical Engineering Journal 136 (2008) 312–319 313

used in our study. The main advantage of this proposed algorithm
is the analytical expression of the control law, which enables it to
be used in real-time control and implemented on low-cost hard-
ware. The main goal of our simulation study was to elaborate the
possible use of the proposed self-adaptive supervisory control
algorithm in a real application. The process control require-
ments are relatively difficult: fast reference-trajectory tracking,
small overshoot of the controlled variable and a small number
of switchings between cold and hot water at the inlet. Special
difficulties arise due to the constraints of the mixing valve and
due to the constraints that are the results of the chemical prop-
erties of the process and the mechanical structure of the batch
reactor. Self-adaptive algorithms are a conceptually appealing
scheme for the control of complex industrial processes where
manual tuning of the controller parameters appear to be pro-
longed and cumbersome, when the parameters of the processes
are time-varying, and when we are dealing with a number of
similar plants that have to be controlled, i.e., the same algorithm
can be used with special tuning of the controller parameter. The
principal self-adaptive algorithms are either based on minimiza-
tion of the quadratic index or, alternatively, they are derived by
attempting to place the closed-loop poles at an arbitrary position,
commonly denoted as sub-optimal as they are not designed to
minimize any cost function [10,14,20]. In our case it is based on a
recursive least-squares identification algorithm with exponential
forgetting.

The paper is organized in the following way: in Section 2
the semi-batch reactor is described, in Section 3 the recursive
least-squares algorithm is discussed, in Section 4 the predictive
functional control algorithm and the supervisory level control are
described, and in Section 5 the simulation results are presented.

2. The semi-batch reactor

The semi-batch reactor, in this case, is situated in a phar-
maceutical company, used in the production of medicines.
Dynamically, it is an example of a hybrid plant. The goal is to
control the temperature of the ingredients stirred in the reactor’s
core so that they synthesize optimally into the final product. In
order to achieve this, the temperature has to follow, as accurately
as possible, the technologically prescribed reference trajectory
given in the recipe.

A scheme of the semi-batch reactor is shown in Fig. 1. The
reactor’s core (temperature T) is heated or cooled through the
reactor’s water jacket (temperature Tj). The construction of the
reactor enables measurements of the jacket temperature, Tj, and
the reactor’s core temperature, T. The temperature of the ingre-
dients should not exceed the maximal temperature of 60 ◦C,
because of the temperature sensitivity of the ingredients. This
means that both temperatures, the water-jacket temperature and
the reactor’s core temperature, should not exceed the maximal
temperature. This can be achieved with an explicitly controlled
temperature inside the reactor, T, and by treating the limitation
of the jacket temperature, Tj, which can be viewed as a state of
the process, as the constraint control problem. The constraint of
the jacket temperature will be denoted as Tjmax

= 60 ◦C.

Fig. 1. The scheme of semi-batch reactor process.

The medium in the jacket is a mixture of fresh input water,
which enters the reactor through on/off valves, and the reflux
water. The temperature of the fresh input water depends on two
inputs: the positions of the on/off valves vH and vC. However,
there are two possible operating modes of the on/off valves. In
the case when vC = 1 and vH = 0, the input water is cool (Tin =
TC = 12 ◦C), whereas if vC = 0 and vH = 1, the input water is
hot (Tin = TH = 75 ◦C). Both on/off valves are controlled by the
signal vCH which is defined as:

vCH =
{

+1, if vC = 0 and vH = 1

−1, if vC = 1 and vH = 0
(1)

The ratio of fresh input water to reflux water is controlled by a
third input, i.e., by the position of the mixing valve vM, which
is limited to the range [vM min, vM max]. The valve rate is con-
strained in the range [�vM min,�vM max].

We are therefore dealing with a multivariable system with
two discrete inputs (vH and vC), one continuous input, vM, and
two measurable outputs (T and Tj). The temperature of the mixed
water or the input jacket temperature, which cannot be measured
directly, although it can be estimated using the temperature of
the input water, Tin, the water jacket temperature, Tj, and the
position of the mixing valve vM, which is denoted as Tjin. It is
constrained in the range between TC and TH (TC ≤ Tjin ≤ TH).
The time constants of the on/off valves are relatively small in
comparison to the time constants of the process itself and can
be neglected, but the dynamics of the mixing valve has to be
considered in the model.

Due to the nature of the system, the time constant of the tem-
perature in the water jacket is obviously much shorter than the
time constant of the temperature in the reactor’s core. Therefore,
the semi-batch reactor is considered as a stiff system.

The mathematical model of the semi-batch reactor is defined
by the differential equations Eqs. (2), (3), (5), (6) and (7) and
the algebraic equations Eqs. (4) and (8).

mjcj
dTj

dt
= vMΦcjTin + (1 − vM)ΦcjTj −ΦcjTj − λS(Tj − T )

− λ0S0(Tj − T0) (2)
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mc
dT

dt
= λS(Tj − (T +�T δ(t − ti))) (3)

�T = mficfi(Tfi − T )

mc +mficfi
(4)

where mj = 200 kg stands for the mass of the water in the
jacket, cj = 4200 J kg−1 K−1the heat capacity of the water in
the pipes,Φ = 1.6 kg s−1 the mass flow in the pipes of the reac-
tor, λ = 420 W m−2 K−1 the thermal conductivity between the
reactor core and the jacket, λ0 = 84 Wm−2 K−1 and S0 = 4 m2

are the thermal conductivity between the jacket and the sur-
roundings and the conduction surface. The temperature of the
surroundings is equal to T0 = 17 ◦C. During the procedure addi-
tional ingredients are added to the reactor. This causes a change
of the mass of ingredients inside the reactor, m, a change of the
heat capacity, c, a change of the conduction surface, S, and a
change of the reactor’s core temperature T. These changes are
much faster than the time constants of the reactor, and for this
reason they are modeled as discontinuous jumps of variables.
The discontinuous jumps, which occur at time instants ti are in
our case modeled using a Dirac impulse δ. The discontinuous
phenomena of the system state, T, is modeled as follows from
Eq. (3). The state jump, �T , is defined in Eq. (4), where mfi
stands for the mass of ingredient added to the reactor at the time
instant ti, cfi defines the heat capacity of the ingredient that is
added and Tfi stands for the temperature of the ingredient at the
time of loading (ti). The variation of the mass inside the reactor
is given in Eq. (5). Eq. (6) denotes the change of the average
heat capacity of the mixture inside the reactor, where

�ci = (cfi − c)
mfi

m+mfi
.

dm

dt
= mfiδ(t − ti), m(0) (5)

dc

dt
= �ciδ(t − ti), c(0) (6)

The time-varying profile of the conduction surface, S, is given
in Eq. (7) as follows:

dS

dt
= Sfiδ(t − ti), S(0) (7)

where Sfi stands for the change of the conduction surface at time
ti, due to the added ingredient. In our case it is roughly modeled
as Sfi = Smfi/m.

The temperature in the reactor can be controlled indirectly
by the input jacket temperature, Tjin, which is now called the
indirect control variable and actually depends on the position of
the mixing valve and on the temperature of the fresh water, as
shown in Eq. (8) which follows

Tjin = vMTin + (1 − vM)Tj (8)

In our approach the control will be developed based on the indi-
rect control variable, which after the supervisory level control
will be transformed into the real control variables, i.e., the posi-
tion of the mixing valve, vM, and the position of the discrete
valves, vC and vH.

3. Recursive least-squares identification

In our example the plant parameters are not known a priori;
the semi-batch reactor is fed during the operation and causes
the time-varying characteristics of the process (m(t), c(t) and
S(t)). This is the reason why the parameters of the plant are
estimated online. In our case we used the standard recursive
estimator with exponential forgetting. The last right term in the
differential equation from Eq. (2) exhibits the loss energy flow
into the surroundings and represents an offset in this equation
(affine equation). To obtain the model in incremental form, the
offset has to be eliminated, which is realized by the filtration and
differentiation of the measured signals.

The filtration and differentiation of the measured variables is
realized by the filter transfer function defined as

Gf(z) = Δ(z)

F (z)
(9)

where F (z) = (1 − fz−1)
p

, the parameter f is defined experi-
mentally (in our example f = 0.95, p = 3),Δ(z) = 1 − z−1 is
the differential operator and the sampling time equals Ts = 20 s.
The behavior of the semi-batch reactor, which is presented in
Eqs. (2) and (3) in continuous form is now transformed into the
discrete-time domain as follows:

T f
j (k) = θ11T

f
j (k − 1) + θ12T

f(k − 1) + θ13T
f
jin(k − 1) (10)

T f(k) = θ21T
f
j (k − 1) + θ22T

f(k − 1) (11)

where superscript ‘f’ stands for the filtered signals.
Defining the regression vectorψT

f1(k) ∈ R
1×3,ψT

f2(k) ∈ R
1×2,

the output variables yf1 and yf2, and the vectors of the identified
parameters θT

1 and θT
2 as follows

ψT
f1(k) = [T f

j (k − 1) T f(k − 1) T f
jin(k − 1) ] (12)

ψT
f2(k) = [T f

j (k − 1) T f(k − 1) ] (13)

yf1(k) = T f
j (k) (14)

yf2(k) = T f(k) (15)

θT
1 = [ θ11(k) θ12(k) θ13(k) ] (16)

θT
2 = [ θ21(k) θ22(k) ] (17)

the following incremental models of the semi-batch reactor are
obtained:

yf1(k) = ψT
f1(k)θ1(k) (18)

yf2(k) = ψT
f2(k)θ2(k) (19)

The parameters θi, i = 1, 2 are estimated using the recursive
least-square identification algorithm as follows:

σi(k) = Pi(k − 1)ψfi(k)(γi + ψT
fi(k)Pi(k − 1)ψfi(k))

−1
(20)

Pi(k) = (Ii − σi(k)ψT
fi(k))Pi(k − 1)/γi (21)
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θi(k)=θi(k − 1) + σi(k)(yfi(k) − ψT
fi(k)θi(k − 1)), i = 1, 2

(22)

where Pi(k), i = 1, 2 denotes the covariance matrix
(P1(k) ∈ R

3×3, P2(k) ∈ R
2×2), θi(k), i = 1, 2 denotes the

vector of the identified or estimated process parameter,
γi, i = 1, 2 denotes the forgetting factor and I1 ∈ R

3×3 and
I2 ∈ R

2×2 are unity matrices. This means that two recursive
identification algorithms are running in parallel, to estimate the
process parameters θ1(k) and θ2(k).

The dynamics of the process is now given by the transfer func-
tionsGmj(z) andGm(z), which denote the behavior of the plant
variables T f

j (k) and T f(k) according to the input jacket tempera-

tureT f
jin(k). Both transfer functions are obtained by transforming

Eqs. (10) and (11) into the Z-domain, and explicitly expressing
the given relations, which are then described as follows:

Gmj(z) = T f
j (z)

T f
jin(z)

= b1jz− b0j

z2 − a1z− a0
(23)

Gm(z) = T f(z)

T f
jin(z)

= b0

z2 − a1z− a0
(24)

where b0j = θ22θ13, b1j = θ13, b0 = θ21θ13, a1 = θ22 + θ11 and
a0 = θ12θ21 − θ11θ22.

Assuming the observability of the process plant, both transfer
functions, Gmj(z) and Gm(z), are transformed to the observ-
able canonical form. The obtained state-space matrices are
Amj, Bmj, Cmj and Am, Bm, Cm, respectively, assuming that
both input–output matrices are equal to zero and that Cmj =
[0 . . . 0 1] and Cm = [0 . . . 0 1] due to the observable canoni-
cal form. The state-space equivalents of the transfer functions
Gmj(z) and Gm(z) are given as follows:

xmj(k + 1) = Amjxmj(k) + BmjT
f
jin, T f

j (k) = Cmjxmj(k) (25)

xm(k + 1) = Amxm(k) + BmT
f
jin, T f(k) = Cmxm(k) (26)

where xmj(k) and xm(k) stand for the model states.
Using the recursive least-squares algorithm, we are faced with

the problem of the covariance matrixPi(k), i = 1, 2, when there
is not enough excitation. In that case the covariance matrix is
exponentially increasing if the forgetting factorγi < 1, i = 1, 2.
This problem, which is called bursting, is solved by calculating
the recursive algorithm only in the case of a satisfied excitation
criterion:

ψT
fi(k)Pi(k − 1)ψfi(k) > kDZ(1 − γi), i = 1, 2 (27)

where kDZ denotes the factor of the dead-zone, when the identi-
fication algorithm is frozen. The dead-zone parameter is defined
heuristically.

4. The predictive functional control algorithm

In this section the well-known basic algorithm of predictive
functional control is introduced [21,23]. In this instance, the

prediction of the plant output is given by its model in the state-
space domain.

The behavior of the closed-loop system is defined by a ref-
erence trajectory, which is given in the form of the reference
model. The control goal, in general, is to determine the future
control action so that the predicted output trajectory coincides
with the reference trajectory. The coincidence point is called
a coincidence horizon and it is denoted by H. The prediction
is calculated assuming of constant future manipulated vari-
ables (u(k) = u(k + 1) = · · · = u(k +H − 1)). This strategy is
known as mean-level control. The H-step-ahead prediction of
the plant output is estimated in Eq. (28):

ym(k +H) = Cm(AHmxm(k) + (AHm − I)(Am − I)−1Bmu(k))

(28)

where I ∈ R
2×2 is unity matrix.

The reference model is given by the following difference
equation

xr(k + 1) = arxr(k) + brw(k)

yr(k) = crxr(k)
(29)

where w stands for the reference signal. The reference model
parameters should be chosen to fulfil the following equation

cr(1 − ar)
−1br = 1 (30)

which results in a unity gain and where cr = 1 and br has to
be equal to 1 − ar. This enables reference trajectory tracking
without the control error (the asymptotic reference tracking).

The prediction of the reference trajectory is then written in
the following form

yr(k +H) = aHr yr(k) + (1 − aHr )w(k) (31)

where a constant and bounded reference signal (w(k + i) =
w(k), i = 1, . . . , H) is assumed. The main goal of the proposed
algorithm is to find a control law that enables the controlled
signal yp(k) to track the reference trajectory.

To develop the control law, (31) is first rewritten as

w(k +H) − yr(k +H) = aHr (w(k) − yr(k)) (32)

Taking into account the main idea of the proposed control
law, the reference trajectory tracking (yr(k + i) = yp(k + i), i =
0, 1, . . . , H), is given by

yp(k +H) = w(k +H) − aHr (w(k) − yp(k)) (33)

The idea of PFC is introduced by the equivalence of the objective
increment vectorΔp and the model output increment vectorΔm,
i.e.,

Δp = Δm (34)

The former is defined as the difference between the predicted
reference signal vector yr(k +H) and the actual output vector
of the plant yp(k)

Δp = yr(k +H) − yp(k) (35)
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Fig. 2. The control scheme of PFC.

Substituting Eqs. (33) into (36) yields,

Δp = yp(k +H) − yp(k)

= w(k +H) − aHr (w(k) − yp(k)) − yp(k) (36)

The model output increment vectorΔm is defined by the follow-
ing formula:

Δm = ym(k +H) − ym(k) (37)

By substituting Eqs. (36) and (37) into (34) and making use of
Eqs. (33) and (28) the following control law can be obtained,

u(k) = η−1((1 − aHr )(w(k) − yp(k)) + ym(k) − CmA
H
mxm(k))

(38)

where

η = Cm(AHm − I)(Am − I)−1Bm (39)

The closed-loop scheme with the basic control law defined in
Eq. (38) is presented in Fig. 2 where

g = η−1(1 − aHr )

L(z) = η−1(1 − aHr )(zI − Am)−1Bm
(40)

Note that the control law (38) is realizable if η �= 0. This con-
dition is true if the plant is stable, controllable and observable.
This means that the PFC control law in its common form can
be implemented only for open-loop stable systems. It can also
be proven that the control law is integrative and the stability
conditions can also be given [23]. The sensitivity to the parame-
ter uncertainties is reduced by implicitly introduced integrative
action into the control law and the asymptotic tracking of the
reference variable is achieved. In [23] it is shown that a sta-
ble control law can always be obtained for open-loop stable
systems, when the coincidence horizon, H, is greater than or
equals the relative order of the controlled system, ρ (H ≥ ρ), as
proposed.

5. Supervisory predictive functional control for a
semi-batch reactor

The control algorithm in the case of a semi-batch reactor
should provide a fast reference tracking of the temperature in
the reactor’s core T (k), taking into account the constraint of
the jacket temperature, Tj(k), which should not exceed Tjmax

,
and the constraints of the valves. It is also very important
that the number of on/off valve switchings should be as small
as possible. There are also the mechanical (physical) con-
straints of the mixing valve, for example, the minimal and
the maximal values and the minimal and the maximal rate

of the valve. The time constant of the mixing valve is taken
into account by the proposed identification of the process
dynamics.

The problem of the constraint jacket temperature, Tj(k), can
be efficiently solved using supervisory level and analytical pre-
dictive functional control law. The supervisory level control
means decision making according to the model-based jacket
temperature monitoring. The decision making means switching
between different predictive control laws. Next, the supervisory
predictive functional control algorithm will be presented. In the
first step, the unconstrained predictive control law um(k) will be
calculated as given next:

um(k)=η−1
m ((1 − aHr )(w(k)−yp(k)) + ym(k) − CmA

H
mxm(k))

(41)

ηm = Cm(AHm − I)(Am − I)−1Bm (42)

where yp(k) stands for the current core temperature, xm(k) and
ym are the states and the output of the process model that defines
the dynamics between the jacket input temperature, Tjin(k), and
the output temperature, T (k). In the second step, the constrained
predictive control law umj(k) is calculated as follows:

umj(k)=η−1
mj((1−aHr )(Tjmax

−ypj(k))+ymj(k)−CmjA
H
mjxmj(k))

ηmj = Cmj(AHmj − I)(Amj − I)−1Bmj

(43)

where ypj(k) stands for the current jacket temperature, xmj(k)
and ymj(k) are the states and the output of the process model
that defines the relation between the jacket input temperature,
Tjin(k), and the jacket temperature Tj(k). This control law is
called the constrained control law because we are calculating
the control law that has Tjmax

(k) as the reference value. In the
third step, the prediction of the jacket temperature is calculated
using the unconstrained control law um(k):

ymj(k + h)=Cmj(A
h
mjxmj(k)+(Ahmj − I)(Amj−I)−1Bmjum(k))

(44)

where h ≥ ρin denotes the prediction horizon of the internal
model, where ρin stands for relative order of the internal model.

Next, the most important part of the supervisory level is intro-
duced as the decision logic that switches between the control
law um(k) and the constrained control umj(k) in the following
way:

if ymj(k + h) − ymj(k) ≤ Tjmax
− Tj(k) then Tjin(k) = um(k)

if ymj(k + h) − ymj(k) > Tjmax
− Tj(k) then Tjin(k) = umj(k)

(45)

where the jacket input temperature, Tjin(k), acts as the indirect
control variable. This means that the position of the on/off valves
and the position of the mixing valve, which both act as the direct
control variables, have to be defined to fulfill the required jacket
input temperature, Tjin(k), given in Eq. (45). The position of the
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on/off valves (vCH(k)) is defined on the supervisory level by
introducing the decision logic, which is as follows:

if e(k) < δe then vCH(k) = −1 else vCH(k) = 1 (46)

where δe defines the switching threshold (δe = −1 ◦C) and the
position of the mixing valve vM(k) is calculated from Eq. (8) as
follows:

vM(k) = Tjin(k) − Tj(k)

Tin(k) − Tj(k)
(47)

where Tin(k) is defined by the position of the on/off valves. The
position and the rate of the mixing valve are limited according
to the physical limitation of the valve (the position [0,1] and the
valve rate [−0.01, 0.01]).

6. Simulation results

The self-adaptive supervisory predictive functional control
algorithm was tested on a semi-batch reactor by means of a
simulation. The study was meant to show the potential of the
proposed approach for further real applications using semi-
batch reactors in the pharmaceutical industry. The obtained
results are very promising, especially because of the very ele-
gant way of tuning the controller, the possibility to handle the
signal constraints together with high control performance and
adaptation.

In the simulation the following initialization of the iden-
tification algorithm parameters was made: the signals were
sampled with the sampling time Ts = 20 s, the initial covari-
ance matrices are equal to P1(0) = 100I3 and P2(0) = 100I2.
The vectors of the estimated process parameters were initial-
ized as θ11 = θ22 = 1 and the other parameters were equal
to zero. The forgetting factors of the identification algorithms
were set to γ1 = γ2 = 0.995, and the factor of the dead-zone
was set to kDZ = 0.01. The initialization of the generalized
predictive control algorithm was the following: H = 10 and
ar = 0.925.

In the simulated experiment the initial mass in the reac-
tor’s core equals m(0) = 600 kg, the conduction surface
S(0) = 2 m2, the heat capacity c(0) = 4200 J kg−1 K−1 and
the mass in the jacket equals mj = 200 kg. The reactor
is fed with an additional ingredient (mf1 = 100 kg, cf1 =
4200 J kg−1 K−1, Tf1 = 17 ◦C) at the time t1 = 8000 s, and
with the second additional ingredient (mf2 = 150 kg, cf2 =
4200 J kg−1 K−1, Tf2 = 17 ◦C) at the time t2 = 30,000 s. These
parameters are only used to simulate the process and are
not used in the controller design procedure. All the informa-
tion about the process parameters θ is obtained by recursive
identification.

The prescribed temperature profile is the following: the ingre-
dient of the reactor should first be heated to 42 ◦ C (in this phase
the first additive is added), at the time 12,500 s the temperature
is changed to 54 ◦ C (in this phase the second additive is added),
at time 25,000 s the temperature is cooled down to 38 ◦ C and
after that at time 37,500 s the ingredient is cooled down to the
outer temperature, which equals 17 ◦C.

Fig. 3. The control of the semi-batch reactor (T (k), Tj(k), w(k)).

In Fig. 3 the output signal, T (k), the jacket temperature, Tj(k),
and the reference signal, w(k), are shown. The position of the
mixing valve and the positions of the on/off valves are shown
in Fig. 4. The algorithm succeeds in controling the temperature
T (k) in the tolerance intervals that are required, also when the
additional ingredients are fed in the reactor. In the stationary
state the discrete valve for hot water is open (vCH = 1) together
with the mixing valve vM slightly open, because of the energy
loss in the surroundings. The switching of the discrete valves
is minimal, as required. In Figs. 5 and 6 the time courses of
the identified process parameters θ11, θ12, θ13, θ21 and θ22 are
shown. The process parameters, θij , are adapted when the refer-
ence is changed or in the case of a disturbance (the addition of
ingredients influences the change in the process parameter θ22,
as seen in Fig. 6). In these situations the excitation of the sys-
tem is large enough to fulfill Eq. (27) and trigger the recursive
identification.

The simulation study was done to elaborate the possible use
of the proposed self-adaptive supervisory control algorithm in
the real application. Using the simulation study the implemen-

Fig. 4. The control of the semi-batch reactor (position of the mixing valve vM

and the position of the on/off valves vCH).
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Fig. 5. The identified process parameters θ11, θ12 and θ13.

Fig. 6. The identified process parameters θ21 and θ22.

tation of a self-adaptive predictive functional control algorithm
was justified. It has been shown that the obtained results meet the
desired criteria: fast and suitable reference-trajectory tracking,
which results in a shorter time for the whole batch; a small over-
shoot of the controlled variable which results in higher-quality
production; and a small number of switchings between cold and
hot water in the inlet, which is important for the longevity of the
actuators.

7. Conclusion

In this paper a self-adaptive supervisory predictive functional
control algorithm was tested to control the temperature in a reac-
tor’s core. The semi-batch reactor is used in the pharmaceutical
industry for the production of medicines. The semi-batch reactor
is an example of a hybrid process where some discrete on/off
valves and a continuous mixing valve are used. The continuous
control with supervision is used to control the hybrid type of pro-
cess. A simulation study was carried out to elaborate the possible
use of the proposed self-adaptive supervisory control algorithm
in the real application. Using the simulation study the implemen-

tation of a self-adaptive predictive functional control algorithm
was justified. It has been shown that the obtained results meet the
desired criteria: rapid and suitable reference-trajectory tracking,
which results in a shorter time for the whole batch; a small over-
shoot of the controlled variable, which results in higher-quality
production; and a small number of switchings between cold and
hot water in the inlet, which is important for the longevity of the
actuators.
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